欢迎访问华体会综合-体育平台官方网站!

产品中心

新闻动态

华体会综合体育

技术联系人:胡先生 13785167302

业务联系人:宋先生 13785136695

邮箱:2880613718@qq.com

地址:天津市西青区王稳庄镇赛达工业园


成功案例

价值百亿美元、史上最强望远镜升空:一文读懂“詹姆斯·韦伯”

  12月25日20时20分,在世人的瞩目下,数千名科学家与工程师花费20余年精心设计与建造的

  光学望远镜模块(OTE)是“韦伯”的主要结构之一,由望远镜的主镜、次镜、三级反射镜、精细转向镜、望远镜框架及其控制装置等结构组成。OTE好比整个“韦伯”的眼睛,其原理是三镜消像散望远镜:光线首先由主镜汇聚并反射给次镜,次镜进一步将光线传递给处于望远镜中心的三级反射镜,而后经过精细转向镜传递给综合科学仪器模块进行光线的接收与处理。

  “韦伯”最吸人眼球的是那18面金光闪闪的六边形主镜。这是一面直径6.5米的镀金铍质反射镜,总面积达到25.4平方米,是“哈勃”的6倍以上。对望远镜来说,口径即真理,“韦伯”的观测能力与“哈勃”相比有巨大提升。“哈勃”拍摄著名的“超深场”图像时,一动不动地指向太空中同一个地方,连续拍摄了16天才捕捉到那令人难以置信的微弱、遥远星系的图像。与之相比,“韦伯”将在短短7小时内完成类似的观测任务。

  “哈勃”超深场图像是人类拍摄过迄今为止最久远宇宙的照片,其中有132亿年前的古老星系。“韦伯”将会拍出更加震撼的图像。

  此外,铍还有硬度较高、热膨胀系数较低等优点,使“韦伯”能够胜任工作条件下巨大的温差,而不会产生过多的热胀冷缩。“韦伯”的铍镜表面利用气相沉积技术喷涂了100纳米厚的金层,尽显奢华,因为金可以很好地提高红外光反射率,起到更好的成像效果。最后,工程师在金层外面又喷涂了一层极薄的二氧化硅,以防止柔软的金层被划伤。

  左:2011年,准备进行低温测试的前六片主镜右:2017年,准备进行低温测试的OTE模块

  因为主镜展开后的精度对望远镜的观测能力有巨大影响,如何保证展开后的精度是主镜设计的难点之一。换句线片独立的镜片在展开后要浑然一体。对此,工程师为每一块镜片设计了6个电动伺服机构(致动器),使每块镜片均能单独调整角度,最高调整精度甚至达到了10纳米,这一尺寸大约相当于人类头发丝的一万分之一。“韦伯”发射后,近红外相机 (NIRCam) 的波前传感器会测量每一片主镜的误差,进而利用计算机算法实现每一块镜片的自动调整。

  “韦伯”的次镜、三级反射镜的材质与主镜相同,均为镀金铍镜。其中次镜是一个直径74厘米的圆形曲面,三级反射镜则是一个更小的不对称六边形镜片。光线经过主镜、次镜、三级镜的反射后,由精细转向镜进一步稳定图像,传递给综合科学仪器模块中的四个主要科学载荷,对光线进行分析与处理。

  体温枪的原理是测量人体发射出红外线的强度,因为物体的温度越高,向四周辐射出的能量就越强,辐射出来的红外线就越多。如果“韦伯”的工作温度过高,它的镜片等结构自身也会发射出红外线,遮盖住来自遥远星系的微弱红外光。因此,“韦伯”的光学望远镜模块需要在-223摄氏度以下的极端低温中工作。

  在太空中对探测器影响最大的热源是太阳,远离太阳便可以降低太阳的辐射量,但过远则会影响太阳能电池板的正常电力供应,并且降低对地通信速率。科学家与工程师找到了一个热量与电源的绝佳平衡点——拉格朗日L2点。

  地球与太阳形成的稳定体系中存在5处引力平衡点,“韦伯”便选择了日地拉格朗日L2点作为大本营。只需要微量的扰动,该望远镜就可以长期稳定在L2点附近。在此处,“韦伯”可以将阳光全部“抛于脑后”,将镜面对向没有太阳的天空。

  日地拉格朗日L2点距地球约150万公里,在此处来自太阳、地球与月球的红外线依旧会对红外观测产生影响。

  为使望远镜温度进一步降低,科学家使出了浑身解数——2003年发射的斯皮策空间红外望远镜也运行在L2点,同时使用昂贵的液氦作为制冷剂,其温度低至-267.7摄氏度。但是,有限的液氦在2009年5月就用完了,导致其工作温度不断上升,此后的观测性能大打折扣。

  为提高薄膜的反射率,以将更多热量反射出去,隔热罩正反面均附有一层100纳米厚的铝,离太阳最近的两层还掺杂了硅,这是这两层材料显现出淡紫色的原因。每层隔热罩均可以阻挡约90%的热量,五层协同工作可以使两侧的温度差达到约300摄氏度,为望远镜主要结构提供-223摄氏度以下的工作温度。

  遮阳板可以将望远镜的镜片等结构温度降至-223摄氏度以下,但该温度对于科研探测设备来说还是偏高

  。三部近红外成像仪将通过被动冷却系统在大约-234摄氏度下工作。中红外成像仪的要求更加苛刻,它的工作温度低至-266摄氏度,在它身上只能通过液氦进行冷却。不过,它对于液氦的需求量远低于斯皮策空间红外望远镜,液氦资源不会过于捉襟见肘。

  “韦伯”使用欧空局研制的阿里安5大型运载火箭,在法属圭亚那库鲁航天发射中心发射升空。前面已述,“韦伯”的光学结构与隔热结构均是折叠的,发射后需要展开。

  此外,“韦伯”还有太阳能电池板、通信天线等至关重要的仪器设备需要展开后才能正常工作。因此,发射后的“韦伯”不能立即工作,还有6个月的在轨部署与测试工作等着它。

  下一步是隔热罩展开。发射3天后,主镜前后的隔热罩托盘先后打开(D/E),光学望远镜模块整体抬升,以与隔热罩拉开距离 (F)。下一步将会展开一面不太起眼的襟翼(G),它的作用是平衡巨大隔热罩承受太阳风的压力,可以最大限度地降低任务期间的燃料用量。最关键的步骤便是将五层隔热罩展开到位并张紧(H/I),这个过程耗时两天。最后,每层隔热罩之间还需要分开一定的距离,起到更好的隔热效果(J)。

  在这个环环相扣的繁琐环节中,任何一个环节出现问题都将对“韦伯”的工作性能产生影响。因为拉格朗日L2点距离地球较远,我们没有机会派载人飞船前去维修,所以一切工作都要在地面试验完成,以确保万无一失。

  之后是望远镜漫长的整体调试期,耗时至少6个月。工程师和科学家将确认每台科研仪器都在正常工作,并对18片主镜进行调试,使其达到最佳聚焦能力。

  综合科学仪器模块(ISIM)承担着“韦伯”的科研探索工作,一共由4款主要仪器组成,分别是近红外相机(NIRCam)、近红外光谱仪(NIRSpec)、精细制导传感器/近红外成像无缝隙光谱仪(FGS/NIRISS)、中红外仪(MIRI)。

  精细制导传感器是整个“韦伯”的“罗盘”,通过该传感器,“韦伯”能以极高的精度指向需要探索的天空。中红外仪是中红外波段相机与光谱仪的复合体,可观测4.6微米到28.6微米的中长红外波段。它还配备了日冕仪,非常适合观测系外行星。

  有了这些波段与原理互补的科学载荷,“韦伯”就化身成一部时光机器。它可以看到130亿光年外的宇宙,观测宇宙第一批天体的形成和演化,揭示宇宙久远的历史。

  另外,“韦伯”还可以通过观测遥远的原始星系,以确定星系是如何演化的,这对我们反思太阳系如何形成与演化有着建设性意义。在星云中间,有不少低能量褐矮星、年轻的原恒星,因为它们的光芒过于暗淡,只有通过“韦伯”才能观察到它们。因此,“韦伯”将为我们揭示一个由不可见的恒星和行星组成的隐秘宇宙。对于系外行星的探索甚至有助于我们揭开地球上生命起源的疑团。

  “韦伯”作为人类史上最强劲的望远镜,人类已经为它倾注了所有科技、财力与时间。人类的好奇心是伟大的,它带领我们前赴后继地探寻宇宙起源、生命起源的真谛。

  “韦伯”就代表着人类最深邃的好奇心,它使人类能够“不畏浮云遮望眼”,带我们看看未曾一见的隐秘世界,为整个人类的科学认知贡献不可泯灭的力量,让我们祝它一路顺风!

  原标题:《价值约100亿美元、史上最强望远镜升空,一文读懂“詹姆斯·韦伯”》